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Simple Summary: Laryngeal squamous cell carcinoma is a prevalent cancer associated with poor
prognosis in advanced stages. Despite advancements in diagnostic tools (e.g., narrow-band imaging),
there have been minimal improvements in therapeutic approaches. The potential new frontier lies
in the realm of biomarkers. This review aims to outline the current understanding of biomarkers in
laryngeal cancer. Specifically, it concentrates on potential biomarkers, including heat shock proteins,
metallothioneins, nuclear factor erythroid 2-related factor 2, micro ribonucleic acids, heme oxygenase,
and cyclooxygenase-2. This review provides a survey of the existing literature on their role in laryn-
geal cancer. It also underscores the scarcity of the literature on this subject, highlighting the significant
role of biomarkers in formulating more precise therapeutic strategies for individual patients.

Abstract: Laryngeal squamous cell carcinoma (LSCC) is the second most common cancer among
head and neck cancers. Despite a lower incidence of laryngeal carcinoma, new diagnostic techniques,
and more targeted therapies, the overall survival has not changed significantly in the last decades,
leading to a negative prognosis in advanced stages. Recently, several studies have focused on the
identification of biomarkers that may play a critical role in the pathogenesis of LSCC. Reviewing the
literature on the main databases, this study aims to investigate the role of some biomarkers in LSCC
that are correlated with oxidative stress and inflammation: heat shock proteins; metallothioneins;
nuclear factor erythroid 2-related factor 2; heme oxygenase; cyclooxygenase-2; and micro ribonucleic
acids. This review shows that biomarker expression depends on the type, grade of differentiation,
stage, and site of carcinoma. In addition, the role of these biomarkers in LSCC is still little-known
and little-studied. However, the study of biomarker expression and the detection of a possible
correlation with patients’ epidemiological, clinicopathological, and therapeutics data may lead to
better awareness and knowledge of the tumor, to the identification of the best therapeutic strategy,
and the most proper follow-up protocol tailored for each patient. In conclusion, the achievement of
these goals may improve the prognosis of LSCC patients.
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1. Introduction

Carcinoma of the larynx is the second most common cancer among head and neck
cancers, with 177,422 new cases per year and 94,771 deaths per year worldwide [1]. La-
ryngeal cancer mainly affects the adult population aged between 55 and 65 years old, but
cases in young adults (under the age of 40) have also been described [2]. To date, men are
five times more affected than women, although there is a progressive increase in incidence
in women due to the increased spread of the smoking habit; smoking habit and alcohol
abuse represent the leading and main risk factors [3]. Other independent risk factors are
occupation-related toxic agents such as polycyclic aromatic hydrocarbons, asbestos, wood
dust, cement dust, etc. [4]. Laryngopharyngeal reflux represents another chronic stress
factor that could increase the risk of laryngeal cancer, especially bile acids [5]. Regarding
histology, squamous cell carcinoma (SCC) accounts for about 95% of laryngeal tumors, with
the prevalence of low and moderate grades of differentiation [6]. The glottis is the most
commonly affected laryngeal region (about 65–70% of cases), followed by the supraglottis
and subglottis [7]. Biopsy with histological examination of the sample continues to be the
gold standard for diagnosis. There are different surgical and non-surgical strategies to
manage laryngeal squamous cell carcinoma (LSCC) [8]. Depending on the tumor stage, sur-
gical therapy may involve organ preservation approaches (transoral laser microsurgery or
transoral robotic surgery), open partial laryngectomies, or total laryngectomy. Non-surgical
treatment may involve exclusive radiation therapy (RT), concurrent chemoradiotherapy
(CRT), and, in some cases, immunotherapy. The choice of therapy, surgical or non-surgical,
depends not only on the features of carcinoma but also on the patient in terms of age, co-
morbidities, preference, and socio-family background. Despite the fact that policies against
smoking and alcohol have led to a lower incidence of laryngeal carcinoma (which today is
around 60%) and despite the introduction of more sensitive diagnostic techniques [9], as
well as more targeted therapies, 5-year overall survival (OS) has not changed significantly
in recent decades leading to a negative prognosis due to late diagnosis in advanced stages
in about 60% of cases with a survival rate below 50% [8,10].

So, based on these assumptions, in recent years, new studies have investigated the
detection of biomarkers in laryngeal tumor tissue that could help to better characterize
the LSCC and could better define a target population to whom a specific therapy may
be proposed (RT, CRT, immunotherapy) with greater success rate. For instance, to date,
there is an ongoing clinical trial about the possible relationship between the expression
level of Excision Repair Crossing Complementation group 1 (ERCC1) biomarker and
CRT or chemotherapy alone in locally advanced head and neck squamous cell carcinoma
[ClinicalTrials.gov ID NCT02128906]. Moreover, a recent review focused on the most
studied biomarkers in LSCC that are molecules involved in apoptosis (e.g., Bcl-2), in
the cell cycle (e.g., cyclin D1, ki-67), structural proteins (e.g., E-cadherin, CD44), tumor
suppressor genes and oncogenes (p53). To date, Bcl-2′s role in LSCC is not clear: some
studies did not find any correlation between its expression and LSCC, while other studies
reported its overexpression in nodal metastasis, advanced stages, and RT-resistant LSCC.
Cyclin D1 is involved in cell progression to the S phase; however, it can also act as an
oncogene in several tumors, e.g., breast, esophageal, lung, and prostate cancers. In LSCC,
upregulation of cyclin D1 is associated with nodal metastasis. Ki-67 is another protein
involved in cell cycle progression that is overexpressed in advanced LSCC with a worse
prognosis. Proteins involved in cell adhesion and migration, such as E-cadherin, play
an important role in tumor progression and involvement of lymph nodes. That is why
E-cadherin is downregulated in advanced and poorly differentiated LSCC with nodal
metastases. P53 is a tumor suppressor gene that, if mutated (e.g., in case of loss of function),
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promotes tumorigenesis. Three studies found that its upregulation is related to a worse
prognosis in LSCC [11–15]. Despite these being the most studied biomarkers, the role of
these biomarkers in the pathogenesis of LSCC is still unclear, and their use in characterizing
LSCC in terms of prognosis and therapeutic response has potential but is not yet a reality.

Notably, the main risk factors for laryngeal carcinomas (smoking habit, alcohol abuse,
and polycyclic aromatic hydrocarbons) are known to induce cellular ROS production and
oxidative stress [16–18], an event that is strictly correlated with tumorigenesis [19].

In this vein, we focused our analysis on factors (transcription factors, heat shock
proteins, antioxidant enzymes) whose expression levels change under oxidative stress. In
particular, this study aims to investigate protein chaperone biomarkers such as heat shock
proteins (HSPs), antioxidant proteins such as metallothioneins (MTs), transcription factors
such as nuclear factor erythroid 2-related factor 2 (Nrf2), enzymes such as heme oxygenase
(HO) and cyclooxygenase-2 (COX-2), as well as different micro ribonucleic acids (miRNAs)
that could play a role in the control of expression of these factors.

2. Search Methodology and Data Analysis

The research of articles was carried out on the main scientific databases PubMed,
Scopus, and Web of Science. The following search keywords were used: larynx OR la-
ryngeal AND cancer OR carcinoma AND heat shock proteins OR HSP OR metallothioneins
OR MT OR nuclear factor erythroid 2-related factor 2 OR Nrf2 OR heme oxygenase OR HO
OR cyclooxygenase-2 OR COX-2 OR micro ribonucleic acid OR miRNAs. Some manuscripts
detected in the reference sections of selected articles were also analyzed. Inclusion criteria
were prospective and retrospective original articles written in the English language, which
provided data about the expression levels of the biomarkers and the possible correlation
with LSCC, studies about at least one of such biomarkers as HSPs, MTs, Nrf2, HO, COX-2,
and/or miRNAs, studies referring LSCC, and both in vitro studies and human clinical
studies. Actually, some studies were carried out in the laboratory using a Hep-2 cell line
that, although considered to be derived from an epidermoid carcinoma of the larynx,
was established via HeLa cell contamination, as reported by the American Type Culture
Collection (ATCC) organization (https://www.atcc.org/products/ccl-23, accessed on 9
October 2023).

Exclusion criteria were review, editorials, case reports, studies that referred only to
benign laryngeal lesions, studies that referred overall to head and neck cancers, studies
referring to non-squamous cell carcinomas of the larynx, and research of the biomarker in
the serum.

From the systematic research on databases and references, 5718 manuscripts were
selected. Before the screening, 4355 duplicates and 52 articles not written in English were
excluded. Then, two authors (B.V. and C.S.) analyzed 1311 manuscripts and excluded
1225 of them via reading title and abstract. So, 86 articles were read in their entirety, and
based on the selection criteria, 44 manuscripts were included in this review: 5 articles about
HSPs; 4 studies about MTs; 3 articles about Nrf2; 3 articles about HO; 13 manuscripts about
COX-2; and 16 studies about miRNAs (Figure 1) [20].

https://www.atcc.org/products/ccl-23
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3. Biomarkers
3.1. Heat Shock Proteins (HSPs)

HSPs are stress-induced proteins involved in intracellular protection mechanisms.
The main stress factors responsible for HSP induction are elevated temperature, oxidative
stress, hypoxia, heavy metals, ethanol, infections, and radiation. Chaperone and HSP
are usually used as synonyms. They are classified according to their molecular weight
(expressed in kiloDaltons). They have canonical functions pertinent to maintaining pro-
tein homeostasis; indeed, they help the correct folding of many proteins and protect cells
from protein misfolding, premature degradation, or aggregation [21]. They also have
non-canonical functions, such as participation in immune system regulation, cell differen-
tiation, and carcinogenesis [22–24]. Typically, they are cytoprotective, but if qualitatively
and/or quantitatively abnormal, they can become pathogenetic and cause a disease called
chaperonopathy. Studies demonstrated that some malignant tumors can be classified as
“chaperonopathies by mistake” since HSPs contribute to cancer cell proliferation and their
resistance against antitumor mechanisms [25]. So, in this case, HSPs help tumor survival
rather than protecting the host.



Cancers 2023, 15, 5096 5 of 18

Studies found that their overexpression and their role in carcinogenesis depend on
the type of cancer [26,27]. For instance, HSP27 overexpression in breast, liver, and prostate
cancers is related to poor prognosis, whereas its high expression in esophageal and lung
squamous cell carcinoma is related to good prognosis [26,28,29].

A few studies about HSP expression in LSCC investigated only three proteins of this
family: HSP27; HSP70; and HSP47 (Table 1).

3.1.1. HSP27

HSP27 represents a small heat shock protein (sHSP) whose effects depend on its
phosphorylation, oligomerization, and possible chimera formation with other sHSP. HSP27
usually inhibits apoptosis and necrosis by blocking the caspase system, and it is involved
in nuclear protein folding regulation and cell differentiation, too [21]. This chaperone is
overexpressed in different types of tumors (breast, lung, prostate, head, and neck) and
plays a role in carcinogenesis by promoting anti-apoptotic activity [21,24,30]. In cancer,
phosphorylation changes the affinity of HSP27 for its oncoprotein, leading to the activation
of anti-apoptotic and pro-survival signaling pathways. This promotes tumor growth,
metastatization, and chemoresistance.

Table 1. Included studies about heat shock proteins’ (HSP) role in laryngeal squamous cell carcinoma.

Authors Lee [28] Karam [29] Kaigorodova [31] Xu [32] Song [26]

Year of publication 2007 2017 2016 2010 2017

Study design Prospective Prospective
Case–control study Retrospective Prospective Retrospective

Sample size - 44 50 50 62

HSP 27 27 27 70 47

Expression level of HSP Upregulation Upregulation Upregulation Upregulation Upregulation

Correlation between
expression levels and LSCC

Cisplatin
resistance

Advanced stage
Poor differentiated

Neck node
metastases

Advanced stage
RT resistance

Inhibition of cancer cell
proliferation

Induction of apoptosis
Increased sensitivity to cisplatin

HSP: heat shock proteins; LSCC: laryngeal squamous cell carcinoma; RT: radiotherapy.

In the case of LSCC, HSP27 is found both in the cytoplasm and in the nucleus. In
particular, a study carried out on 50 samples of LSCC reported a correlation between
the cytoplasmatic expression of phosphorylated HSP27 and nuclear expression of both
phosphorylated and non-phosphorylated HSP27 and neck node metastases [31]. Moreover,
the expression level of HSP27 is found to be related to tumor stage (p-value 0.0039) and
grade of differentiation (p-value < 0.001) [29]. A 2007 study found that overexpression of
this protein in LSCC induces chemoresistance against cisplatin without effects against RT.
Indeed, HSP27 seems to arrest cells at the G1 phase, conferring resistance to cisplatin, which
primarily acts in the S phase [28]. Therefore, the research on HSP27 in cancer cells could be
useful in the case of advanced LSCC, where induction chemotherapy could be proposed.

An in vitro study demonstrated that overexpression of HSP27 in LSCC cells showed
two-fold higher survival than cells without biomarker expression after cisplatin exposition
since it seems to delay cell proliferation [28]. Indeed, in this study, the authors pretreated
control LSCC cells (without HSP27) with mimosine, which arrests cells in the G1 phase,
mimicking the role of HSP27. Then, these cells were exposed to cisplatin, finding higher
survival than LSCC cells without mimosine and demonstrating the HSP27 mechanism of
action in chemoresistance.

3.1.2. HSP70

HPS70 is involved in the control of cellular homeostasis. It plays a role in inhibiting
apoptosis induced by reactive oxygen species (ROS). HSP70 overexpression is related
to poor prognosis in endometrial and breast cancers [27]. Xu et al. suggested that the
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expression level of HSP70 was higher in the advanced stage than in the early stage of
LSCC (p-value 0.015) [32]. In particular, overexpression of HSP70 induces radiotherapy (RT)
resistance by inhibiting ROS-induced apoptosis promoted by X-ray. In particular, HSP70
inhibits the degradation of C23, a nuclear protein involved in cell proliferation promotion,
induced by RT through ROS.

3.1.3. HSP47

HSP47, also called colligin-2, is a collagen protein of the endoplasmic reticulum
involved in the production of procollagens. It is overexpressed and related to carcinogenesis
and poor prognosis in several tumors (oral cavity, breast) but not in all types of cancers [33].

However, in the larynx, HSP47 expression is higher in normal tissue than in LSCC,
and it decreases with a decrease in the degree of differentiation of cancer (p-value < 0.001).
A study showed that this chaperone inhibits cancer cell proliferation, induces apoptosis
(via intrinsic and extrinsic pathways), and increases sensitivity to cisplatin. So, in this
case, its high expression is related to better prognosis and longer OS (p-value 0.001).
In vitro study confirmed the following result: overexpression of HSP47 inhibited cancer
cell proliferation [26] (Figure 2).
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3.2. Metallothioneins (MTs)

Metallothioneins are cysteine-rich proteins that bind metals (copper and zinc), protect-
ing cells against ROS, radiation, and heavy metal toxicity. In fact, thanks to the thiol group
of their cysteine, MT can bind heavy metals (cadmium, platinum, mercury), protecting
cells from their toxicity, whereas, in physiological conditions, MTs bind zinc and copper,
promoting cell proliferation. MT1 and MT2 are the most expressed among the 11 human
MT isoforms. By the way, MT1 and MT2 expression is induced by different stimuli such
as metals, oxidants, and stress. Studies have hypothesized the mechanisms of action of
MTs in cancer progression. In particular, the binding of zinc by the MTs can lead to the
following possible effects: (1) zinc promotes G1/S phase transition; therefore, low MT
levels may arrest cancer cells in the G1 phase, inhibiting their proliferation, and (2) zinc is
fundamental for the transcription of tumor suppressor protein as p53; therefore, high MT
levels may remove zinc from p53, causing its inhibition and promoting uncontrolled cancer
cell growth [34].

Also, in this case, MT expression depends on the type of cancer: upregulated in
breast and nasopharyngeal tumors and downregulated in prostate and thyroid carcinoma.
Moreover, their overexpression is related to poor prognosis in breast cancer and good



Cancers 2023, 15, 5096 7 of 18

prognosis in rectal carcinoma. In the case of lung cancer, MTs are expressed in squamous
cell carcinoma, but they are not encountered in small cell cancer [34].

Studies demonstrated their higher expression in malignant lesions than in dysplasia
or benign lesions of the larynx (p-value < 0.0001 [35]; p-value 0.0004 [36]). However, for
LSCC, no statistically significant differences were found in MT expression level between
different grades of tumor differentiation [35,37]. So, these results demonstrated that MTs
may be useful only to distinguish between benign and malignant laryngeal lesions, consid-
ering them as an early biomarker of LSCC. Moreover, a 2014 study analyzed the possible
correlation between genetic polymorphism of MT2A and the risk of LSCC. In particular,
this study found that the single-nucleotide polymorphism at loci 5 A/G (rs28366003) of
the MT2A gene was associated with a high risk (1.6-fold higher) of developing an LSCC
(p-value < 0.001) [38] (Table 2).

Table 2. Included studies about metallothioneins’ (MTs) role in laryngeal squamous cell carcinoma.

Authors Ioachim [35] Nowinska [36] Pastuszewski [37] Starska [38]

Year of publication 1999 2016 2007 2014

Study design Prospective Prospective Retrospective Prospective

Sample size 73 83 65 323

MTs MT MT-I/II MT
Loci—5 A/G

(rs28366003) of the
MT2A gene

Expression level of MTs Upregulation Upregulation Upregulation Genetic polymorphism

Correlation between
expression levels

and LSCC

Predictive of malignant
transformation of
laryngeal lesion

Higher in LSCC than in
benign laryngeal

lesions

Predictive of malignant
transformation of
laryngeal lesion

High risk of
developing LSCC

MTs: metallothioneins; LSCC: laryngeal squamous cell carcinoma.

3.3. Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)

Nrf2 is a transcription factor that plays a role in cellular protection against oxidative
stress, one of the main causes of DNA damage and carcinogenesis [39]. Under physiologi-
cal conditions, Kelch-like ECH-associated protein 1 (KEAP1) keeps low Nrf2 expression,
whereas, in case of oxidative stress conditions, KEAP1 is inhibited by ROS, and Nrf2 is
overexpressed and reaches the nucleus where it activates its corresponding genes encoding
cytoprotective enzymes such as heme oxygenase-1 (HO1) and NAD(P)H quinone oxidore-
ductase 1 (NQO1). Therefore, genetic changes, e.g., gain of function or amplification of Nrf2
or loss of functions or deletion of KEAP1, could lead to carcinogenesis and resistance to
RT [40,41]. Its overexpression is related to poor prognosis in lung and esophageal squamous
cell carcinoma [42,43].

In the case of LSCC, changes in its oxidative stress pathway seem to be related to
resistance to RT (p-value 0.03) [44]. Li et al. reported high expression of Nrf2 in advanced
LSCC compared to adjacent health tissue (p-value < 0.01) regardless of age, TNM stage,
and tumor size [45]. Zhou et al. reported higher expression of Nrf2 in cancer cell nuclei
than in normal surrounding cells and found that its overexpression is related to cisplatin
resistance of LSCC. Actually, ROS induced by cisplatin led to the activation of intranuclear
Nrf2, which reduces cancer response to chemotherapy [46] (Table 3).
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Table 3. Included studies about Nrf2′s role in laryngeal squamous cell carcinoma.

Authors Sheth [44] Li [45] Zhou [46]

Year of publication 2021 2016 2019

Study design Retrospective Prospective Prospective

Sample size 20 33 32

Marker Nrf2 Nrf2 Nrf2

Expression level of Nrf2 Changes in Nfr2/KEAP1
oxidative stress pathway Upregulation Upregulation

Correlation between
expression levels

and LSCC
RT resistance Advanced stage Cisplatin resistance

Nrf2: nuclear factor erythroid 2-related factor 2; LSCC: laryngeal squamous cell carcinoma; RT: radiotherapy.

3.4. Heme Oxygenase (HO)

Heme oxygenase-1 (HO-1) is an enzyme that protects cells (including cancer cells)
against oxidative stress, inflammation, and apoptotic effect [47]. HO-1 is a target of Nrf2.
Under cellular oxidative stress conditions, Nrf is activated and migrates into the cell
nucleus, where it binds to the antioxidant response element (ARE) area of the HO-1 gene.
Studies found that HO-1 is usually more expressed in cancer tissue (e.g., squamous cell
carcinoma, lymphosarcoma, melanoma) than in close healthy tissues [48].

Lv et al. carried out a laboratory study on human LSCC Hep-2 cell lines to assess
the role of HO-1 in reducing the pro-apoptotic action of cisplatin, one of the most used
chemotherapeutics [49]. Cisplatin promotes cancer cell apoptosis by breaking DNA, inhibit-
ing DNA synthesis, or inducing oxidative stress, leading to Nrf2 activation. In their study,
the authors found that a high dose of cisplatin is needed to overcome the anti-apoptotic
effect of HO-1; however, a high dose of chemotherapeutic means high toxicity and sev-
eral side effects, too. So, being aware of the HO-1 mechanism of action in cancer, the
authors suggest suppressing the enzyme expression to enhance LSCC chemosensitivity
to cisplatin. This may lead to a lower cisplatin therapeutic dose and a lower risk of side
effects. In their prospective study on 142 patients, Tang et al. found lower HO-1 levels
in the LSCC group compared to control ones (p-value < 0.001) and that HO-1 levels are
inversely correlated with advanced tumor stages (p-value < 0.019) and lymph node metas-
tases (p-value < 0.001) [50]. On the contrary, the study of Li et al. demonstrated higher
HO-1 expression levels in the advanced stage of LSCC than in control samples [45] (Table 4).

Table 4. Included studies about HO’s role in laryngeal squamous cell carcinoma.

Authors Lv X [49] Tang [50] Li [45]

Year of publication 2016 2016 2016

Study design Prospective Prospective
Case–control study Prospective

Sample size - 142 33

Marker HO-1 HO-1 HO-1

Expression level of HO Inhibition Downregulation Upregulation

Correlation between
expression levels and LSCC

Increased cisplatin
sensitivity

Advanced stage
Neck node metastases Advanced stage

HO: heme oxygenase; LSCC: laryngeal squamous cell carcinoma; RT: radiotherapy.

3.5. Cyclooxygenase-2 (COX-2)

There are two isoforms of cyclooxygenase, COX-1, a constitutive enzyme, and COX-2,
which is induced by stress factors (e.g., smoking, RT). COX-2 is an enzyme that catalyzes
the production of prostaglandin E2 (PGE2) from arachidonic acid [51]. This enzyme is
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usually expressed at low levels in healthy tissue; its overexpression is due to inflammatory
cytokines and oncogenes. High levels of COX-2 lead to increased production of PGEs that
promote carcinogenesis, mainly by angiogenesis, but also by suppressing apoptosis and
immune response [52]. This explains why it was found in some tumors such as breast,
liver, endometrial, and laryngeal cancers and related to poor prognosis and high risk of
recurrence [53–56]. Sayar et al. compared COX-2 expression levels between LSCC, atypical
hyperplasia, and vocal fold nodules. The authors did not find COX-2 staining in vocal fold
nodules, whereas there was staining in atypical hyperplasia (45.7% of cases) and LSCC
(91.4% of cases). The COX-2 staining intensity was highest in the laryngeal cancer group;
however, in this group, a statistically significant relation between COX-2 staining levels
and duration of smoking (p-value 0.89) and age (p-value 0.08) was not found [55].

Ranelletti et al. studied COX-2 expression in LSCC by immunohistochemistry. They
found COX-2 immunostaining in well-differentiated laryngeal cancer cells (G1), whereas
the poorly differentiated laryngeal cancer cells and the health cells close to the tumor did
not express COX-2. By the way, they did not observe a statistically significant correlation
between COX-2 expression and TNM stage (p-value 0.96), tumor site (p-value 0.17), and age
(p-value 0.78) [57]. Similarly, other studies reported that epithelial immunohistochemical
expression of COX-2 is mostly comparable between well-differentiated (G1) and moderate-
differentiated (G2) cancer cells, whereas the enzyme is not found in poorly differentiated
(G3) cancer cells (p-value 0.04) [58,59]. On the contrary, a study conducted on 80 patients
affected by LSCC reported a relationship between COX-2 upregulation and advanced
stages and poorly differentiated LSCC, correlating high expression levels of this marker
with unfavorable prognosis [60]. A 2006 case–control study on 62 samples found higher
expression levels of COX-2 in LSCC than in laryngeal normal tissue (p-value < 0.01) [61].
Moreover, Kourelis et al. also observed an inverse statistically significant relationship
between levels of COX-2 and risk of LSCC recurrence and disease-free survival (DFS)
(p-value 0.03) [58,62]. Similar results were achieved by Pérez-Ruiz et al., who found a
correlation—although not statistically significant—between expression levels of COX-2 and
DFS and overall survival [63]. Also, Cho et al. found a statistically significant correlation
between COX-2 upregulation and the risk of local relapse in the case of T1-T2N0 LSCC [64].
Then, the authors focused on the microenvironment of the carcinoma, demonstrating that
COX-2 expression in cancer-associated fibroblasts (CAFs) could explain the easier tendency
to cancer spread and progression through the stroma in poorly differentiated tumors.

A 2022 meta-analysis found that COX-2 overexpression is related to a higher risk
of developing LSCC. The authors also reported a correlation between COX-2 expression
and T-stage and lymph node metastases; however, this result was found only in the
Asian but not the Caucasian population. In conclusion, this meta-analysis demonstrates a
statistically significant association between COX-2 overexpression and worse prognosis
in LSCC (p-value < 0.05) [65]. Sackett et al. reported that upregulation of COX-2 in glottic
cancer is related to a higher risk of overall mortality (p-value 0.04) and a higher risk of
developing a second primary tumor. However, they did not find any statistical correlation
between COX-2 overexpression and gender (p-value 0.046), smoking habit (p-value 0.20),
alcohol intake (p-value 0.46), TNM stage (p-value 0.19) and histology (p-value 0.06), or risk
of recurrence or mortality related to glottic cancer [66].

COX-2 role in LSCC sensitivity to radiation therapy (RT) was studied by Nix et al. [67].
They demonstrated that laryngeal cancer cells with higher levels of COX-2 are resistant
to RT (p-value 0.004). So, they hypothesized that assessing the expression levels of this
enzyme in pre-treatment LSCC could be a useful prognostic tool: its upregulation may
predict the risk of RT failure, recommending surgery as first-line treatment in this case.
Moreover, they assumed that selective COX-2 inhibitors, such as NS-398 and SC-236, may
enhance sensitivity to RT in cancer cells with COX-2 overexpression [68,69]. By the way,
studies demonstrated that inhibition of COX-2 is related to the proliferation of immune
suppressor cells, such as the natural killer T (NKT) cells. In fact, in their study, Klatka et al.
found that natural killer T (NKT) cell proliferation was lower in the laryngeal cancer group
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than in the control group (p-value < 0.0001). The authors also reported higher expression of
NKT cells in the laryngeal cancer group treated with COX-2 inhibitor than in the laryngeal
cancer group without this inhibition (p-value < 0.0001). Moreover, the NKT cell expression
level was higher in the case of early LSCC, well-differentiated tumor (G1), and without
neck node metastases (p-value < 0.05). So, based on these data, the authors have concluded
that a COX-2 inhibitor, called celecoxib, promotes the proliferation of natural killer T (NKT)
cells that enhance specific immune responses and suppress tumor angiogenesis, suggesting
a possible role of celecoxib in enhancing immunotherapy effect against LSCC [70].

In vitro study on human LSCC Hep-2 found that small hairpin RNA (shRNA)-induced
downregulation of COX-2 can inhibit cancer proliferation and invasion and induce cancer
cell apoptosis by promoting Caspase-3 activity [71]. This downregulation seems to enhance
the sensitivity to Taxanes, which are chemotherapeutic drugs (Table 5) (Figure 3).

Table 5. Included studies about COX-2′s role in laryngeal squamous cell carcinoma.

Authors Year of
Publication Study Design Sample Size Expression Level

of COX-2
Correlation between

Expression Levels and LSCC

Sayar [56] 2013 Prospective 105 Upregulation LSCC and smokers

Ranelletti [57] 2001 Prospective 61 Downregulation Poorly differentiated LSCC and
normal laryngeal tissue

Kourelis [58] 2009 Retrospective 52 Downregulation Higher risk of local recurrence
Shorter DFS

Kawata [59] 2006 Prospective 24 Upregulation Well-differentiated

Chen [60] 2013 Retrospective 80 Upregulation Advanced stage
Poorly differentiated

Chen [61] 2006
Prospective

Case–control
study

62 Upregulation LSCC

Kourelis [62] 2007 Prospective 129 Upregulation LSCC

Pérez-Ruiz [63] 2012 Retrospective 59 Upregulation Better OS
Longer DFS

Cho [64] 2004 Prospective 123 Upregulation Higher risk of local relapse in
T1-T2N0

Sackett [66] 2008 Prospective 301 Upregulation
Higher risk of second

primary tumor
Higher overall mortality

Nix [67] 2004 122 Upregulation Higher resistance to RT

Klatka [70] 2017
Prospective

Case–control
study

78 Inhibition (through
celecoxib)

Higher sensitivity
to immunotherapy

Wang [71] 2008 Prospective - Inhibition (through
shRNA)

Induction of cancer
cell apoptosis

Inhibition of cancer
proliferation and invasion

COX-2: cyclooxygenase 2; LSCC: laryngeal squamous cell carcinoma; RT: radiation therapy; DFS: disease-free
survival; shRNA: small hairpin RNA; OS: overall survival.

3.6. Micro Ribonucleic Acids (miRNAs)

MiRNAs are endogenous and non-coding RNAs, usually containing from 19 to
25 nucleotides, that silence target transcripts and impact gene expression. They can have
tumor-suppressive or protooncogenic effects, depending on the type of cancer [72]. Epi-
genetic alterations and defects in enzymes involved in miRNA maturation cause miRNA
dysregulation, leading to carcinogenesis. The identification of different expression profiles
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of miRNAs in the neoplastic tissue compared with normal tissue supports the hypothesis
of a probable involvement of miRNAs in tumor development and progression. So, consid-
ering the important role of miRNAs in the control of protein expression, the detection of
the protein pattern under the control of miRNAs could give important information about
specific biomarkers of laryngeal carcinomas.
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Studies demonstrate that tobacco smoke may cause changes in the expression level
of many miRNAs and cause disrupting mechanisms that are regulated by miRNAs. The
expression of miRNAs was found to be distinctive of tumor type, suggesting a role of
miRNAs in human carcinogenesis and indicating that miRNAs could be used for tumor
classification, diagnosis, and prognosis. For instance, Hs_miR-183_5p is upregulated in
liver and colorectal cancers, whereas it is downregulated in breast cancer [73,74].

A recent study compared the expression of nine miRNAs in benign, premalignant, and
malignant laryngeal lesions and found a statistically significant expression of Hs_miR-21_5p,
Hs_miR-218_3p, and Hs_miR-210_3p only in the malignant laryngeal lesions. This result
could suggest miRNA’s role as a biomarker for laryngeal cancers [75–78]. In particular,
Kinoshita et al. explained the role of Hs_miR-218_3p in the regulation of migration and
invasion of tumor cells via local adhesion pathways: these data could clarify the mechanism
of local recurrence and distant metastasis [79]. Also, Hs_miR-744-3 upregulation seems to
be related to neck node metastasis [80], while Hs_miR-138 seems to be negatively correlated
to distal metastases in LSCC [81]. Tuncturk et al. also found that Hs_miR-183_5p, Hs_miR-
155_5p, and Hs_miR-106b_3p expressions resulted in being statistically significant in both
premalignant and malignant lesions, suggesting their role as transformation biomarkers
maybe helping to determine the malignancy potential of laryngeal lesions [75]. In particular,
Hs_miR-183_5p overexpression is positively correlated to neck node metastasis in supra-
glottic cancer [75]. Meanwhile, Hs_miR-375 seems to be downregulated in supraglottic
cancer (p-value 0.037) and in the case of alcohol abuse (p-value < 0.05) [76].

As written above, cigarette smoking is one of the main risk factors for laryngeal
cancer. So, many studies focused on its effect on miRNA changes and deregulation,
leading to impairment of the p53 pathway, too [82,83]. Based on these assumptions, a
study correlated smoke habits with miRNA changes in laryngeal cancer and found that
Hs_miR-202 is overexpressed in smokers for more than 20 years (p-value 0.005); however,
its expression level is not found to be related to LSCC stage (p-value 0.087). Hs_miR-548 is
downregulated in smokers for more than 20 years (p-value 0.004), but its expression level
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statistically increases in pT4N+ LSCC (p-value 0.030). This study also demonstrated that the
Hs_miR-29a expression level is statistically significantly lower in T1 than in T2 or T3 LSCC
(p-value 0.037), without differences based on smoking habit duration (p-value 0.096). This
result confirms that Hs_miR-29a expression is positively correlated with the TNM stage,
suggesting its role as an oncogene in laryngeal cancer. The authors also found that Hs_miR-
4768-3p is negatively correlated with neck node metastasis (p-value 0.018). Moreover, it is
downregulated in smokers for less than 20 years (p-value 0.036). These data suggest its
role as a tumor suppressor in LSCC [84]. Expression of miR-149b in LSCC was found to be
related to histological grade and TNM and 5-year overall survival (p-value <0.05), acting
as an oncogene [85].

Recent in vitro studies on human LSCC Hep-2 cell lines found that miR-33a, miR-
199a-5p, miR-145, miR-34a, and miR-150-5p overexpression promoted cancer cell apoptosis,
suggesting a role as tumor suppressor [86–90]. A study carried out on 97 patients with
LSCC demonstrated that low expression levels of miR-196b are related to worse overall
survival (median survival: 48 months), while its overexpression is related to better survival
(median survival: 81 months) (p-value 0.04) [91].

Moreover, a 2019 study reported low expression levels of miR-143-3p in 52 LSCC
samples, relating this value to the advanced stage and poorly differentiated tumor. In vitro
analysis also showed that its overexpression induced cancer cell apoptosis and inhibited
cell proliferation and migration [92]. Maia et al. enrolled 34 LSCC samples and found that
miR-296-5p overexpression was related to resistance to RT (p-value 0.010) and a higher risk
of recurrence in the early stage (p-value 0.025) [93] (Tables 6 and 7).

Table 6. Included studies about miRNAs’ role in laryngeal squamous cell carcinoma.

Authors Year of
Publication

Study
Design

Sample
Size miRNAs Expression Level

of miRNAs
Correlation between Expression

Levels and LSCC

Tuncturk [75] 2021 Prospective 30

miR-183_5p Upregulation Neck node metastasis in
supraglottic cancer

miR-155_5p Upregulation
Upregulation

Both in premalignant and
malignant lesionsmiR-106b_3p

Bruzgielewicz [84] 2017 Prospective 48

miR-29a Upregulation Early stage

miR-202 Upregulation Advanced stage
Long-time smokers

miR-4768-3p Downregulation Advanced stage with
nodal metastases

miR-548 Upregulation Advanced stage with
nodal metastases

Karatas [86] 2018 Prospective - miR-33a Upregulation Cancer cell apoptosis

Li [87] 2020 Prospective 25 miR-199a-5p Upregulation Cancer cell apoptosis

Hu [76] 2014
Prospective

Case–control
study

46
miR-21 Upregulation Biomarker for laryngeal cancers

Worse prognosis

miR-375 Downregulation Supraglottic cancer
Alcohol abuse

Gao [81] 2015
Prospective

Case–control
study

30 miR-138 Downregulation Distal metastases
Worse prognosis

Erkul [77] 2017
Retrospective
Case–control

study
72 miR-21 Upregulation Biomarker for laryngeal cancers

Karatas [88] 2016
Prospective

Case–control
study

80 miR-145 Downregulation Tumor suppressor
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Table 6. Cont.

Authors Year of
Publication

Study
Design

Sample
Size miRNAs Expression Level

of miRNAs
Correlation between Expression

Levels and LSCC

Shen [89] 2012
Prospective

Case–control
study

69 miR-34a Downregulation Shorter DFS
Tumor suppressor

Xu [85] 2016 Prospective 97 miR-149 Downregulation Shorter OS

Luo [91] 2018 Prospective 79 miR-196b Upregulation Worse prognosis

Chen [90] 2023
Prospective

Case–control
study

16 miR-150-5p Downregulation Tumor suppressor

Li [80] 2016 Prospective - miR-744-3p Upregulation Neck node metastasis

Zhang [92] 2019 Prospective 52 miR-143-3p Downregulation
Advanced stage

Poorly differentiated
Shorter OS

Maia [93] 2015 Retrospective 34 miR-296-5p Upregulation Resistance to RT
Recurrence in early stage

Liu [78] 2009 Prospective 210 miR-21 Upregulation Biomarker for laryngeal cancers

miRNAs/miR: micro ribonucleic acid; LSCC: laryngeal squamous cell carcinoma; RT: radiation therapy;
DFS: disease-free survival; OS: overall survival.

Table 7. Micro ribonucleic acid (miRNA) in laryngeal squamous cell carcinoma.

Micro Ribonucleic Acid (miRNAs) Overexpression

Hs_miR-21_5p Biomarker for laryngeal cancers: only in the malignant
laryngeal lesionsHs_miR-210_3p

Hs_miR-183_5p Positively related to neck node metastasis in
supraglottic cancer

Hs_miR-155_5p “Transformation biomarkers”: both in premalignant and
malignant lesionsHs_miR-106b_3p

Hs_miR-4768-3p Negatively correlated with neck node metastasis
Downregulated in smokers for less than 20 years

Hs_miR-29a Positively related to tumor stage

Hs_miR-202 Overexpressed in smokers for more than 20 years

Hs_miR-548 Overexpressed in advanced laryngeal cancer (T4N+)

Hs_miR-33a
Hs_miR-199a-5p
Hs_miR- 150-5p

Tumor suppressor
Cancer cell apoptosis

Hs_miR-375 Downregulated in supraglottic cancer and in
alcohol abuse

Hs_miR-138 Negative related to distal metastases

Hs_miR-145 Tumor suppressor

Hs_miR-34a Positively related to disease-free survival

Hs_miR-149 Negative related to prognosis
Negative related to prognosisHs_miR-196b

Hs_miR-744-3p Neck node metastasis

Hs_miR-143-3p Downregulated advanced and poorly differentiated
laryngeal cancer

Hs_miR-296-5p Resistance to radiation therapy
Risk of recurrence in early stage



Cancers 2023, 15, 5096 14 of 18

4. Conclusions

Despite the increased awareness of the carcinogenic risks related to smoking and
alcohol habits and the now customary use of more sensitive diagnostic techniques, laryngeal
cancer represents the second most common carcinoma among head and neck cancers, with
a survival rate below 50% in advanced stages. Because of these data and poor prognosis,
recent studies focus on the identification of biomarkers that may play a critical role in
the pathogenesis of laryngeal squamous cell carcinoma or that may correlate with any
factors (e.g., age, tumor stage, risk factors). However, this review showed that the study
of biomarkers in LSCC is still at the beginning, and further research is needed to achieve
the main goal: the detection of a therapeutic strategy tailored for each patient in order to
ensure the greatest success rate.

5. Future Directions

The study of biomarker expression in LSCC and the detection of a possible correlation
with patients’ epidemiological, clinicopathological, and therapeutics data may lead to better
knowledge of LSCC, the identification of the best therapeutic strategy, and the most proper
follow-up protocol tailored for each patient, improving the prognosis of LSCC patients.
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